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Drift waves and tokamak plasma turbulence
Role in the context of fusion research

• Plasma performance :

In tokamak plasmas, performance is limited by turbulent radial transport of

both energy and particles.

• Gradient-driven :

This turbulent transport is caused by drift-wave instabilities, driven by free

energy in plasma temperature and density gradients.

• Unavoidable :

These instabilities will persist in a reactor.

• Various types (asymptotic theory) :

ITG, TIM, TEM, ETG . . . + Electromagnetic variants (AITG, etc).
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Electron-ion Scale Separation
Parameterized by the electron-to-ion mass ratio

• Turbulence extends from electron (ρe) scales to ion (ρi) scales:

(Lx)i

(Lx)e

∼ µ
(Ly)i

(Ly)e

∼ µ

• Characteristic times are short for electrons and long for ions :

τi

τe

∼
a/ve

a/vi

∼ µ

• Critical parameter is the root of the mass-ratio :

µ
.
=

√

mi

me

≃ 60
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Coupled ITG/TEM-ETG Transport
Motivation and What’s New

• Is energy transport from electron-temperature-gradient (ETG) modes

significant?

– Is it a large fraction of the total χe?

– Could it account for residual electron transport in an ITB?

– How do we define it, since its only part of χe?

• GYRO is well-suited (scalable, efficient) to study this problem.

• This work was supported by a DOE INCITE computer-time award.

• First simulations to resolve both electron-scale and ion-scale turbulence.

Let’s define χETG

e as that which arises from kθρi > 1.0
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GYRO Weak Scaling
Increasing velocity-space resolution at fixed spatial grid
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Multi-scale simulations require spatial grid refinement
µ = 1, kθρi ≤ 1
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Multi-scale simulations require spatial grid refinement
µ = 2, kθρi ≤ 2
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Multi-scale simulations require spatial grid refinement
µ = 4, kθρi ≤ 4
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Multi-scale simulations require spatial grid refinement
µ = 8, kθρi ≤ 8
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Three Ways to Treat Ion Dynamics
Definitions

1. ETG-ai = adiabatic ion model of ETG (CHEAP)

ion scales do not enter

2. ETG-ki = kinetic ion model of ETG (EXPENSIVE)

(no ion drive) → a/LT i = 0.1, a/Lni = 0.1

3. ETG-ITG = kinetic ion model of ETG (EXPENSIVE)

(ion drive) → a/LT i = a/LTe, a/Lni = a/Lne

Other parameters taken to match the Cyclone base case :

q = 1.4, s = 0.8, R/a = 2.78, a/LTe = 2.5, a/Lne = 0.8
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The ETG-ai Model
The minimal model of ETG, but is it sensible?

• Basis of original studies by Jenko and Dorland.

• Take short-wavelength limit of the ion response:

δfi(x,v, t) → −n0 FM(|v|)
e δφ(x, t)

Ti

.

• Nearly isomorphic to usual adiabatic-electron model of ITG.

• Computationally simple – ion time and space scales removed.

• The physics of zonal flows is dramatically altered.
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Three Ways to Treat Ion Dynamics
Comparison of linear growth rates

1. ETG-ai

adiabatic ion model of ETG

2. ETG-ki

kinetic ion model of ETG

3. ETG-ITG

kinetic ion model of ETG
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where n is the toroidal eigenmode number.
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Reduced Mass Ratio for Computational Efficiency
A crucial method to cut corners (for ETG-ki and ETG-ITG models)

• Can deduce essential results using µ < 60.

• Fully-coupled simulations, as shown, use light kinetic ions :

µ
.
=

√

mi

me

= 20, 30 .

• Simulation cost scales roughly as µ3.5:

(

30

20

)3.5

≃ 4.

µ = 20 5 days on Cray X1E (192 MSPs)

µ = 30 5 days on Cray X1E (720 MSPs)
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The failure of the ETG-ai model
Can illustrate the divergence by parameter variation
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The failure of the ETG-ai model
A false asymptote occurs if short-wavelength modes are unde rresolved
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The Effect of Ion Gradients: ETG-ITG versus ETG-ki
Finite ion gradients reduce χETG

e
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The reduction in ETG-ITG short-wavelength transport is not fully understood;

probably the result of strong long-wavelength shearing .
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Understanding the Effect of Ion Gradients
What is the dominant physical mechanism for this reduction?
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χe is the nonlinear electron heat flux .

aγ/vi is the linear growth rate .
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Effect of Reduced Perpendicular Box Size
A 32ρi × 32ρi box is enough to capture the physics for kθρe > 0.1.
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Effect of perpendicular grid refinement
Remove spectral lip (4 days on 1536 XT3 CPUs, courtesy M. Fahey)
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Perpendicular Spectral Intensity of Density Fluctations
ETG-ITG spectrum is highly isotropic (streamerless) for k⊥ρi > 0.5
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Electron-scale eddies apparent in ETG-ki (left) simulation.
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Perpendicular Spectral Intensity of Density Fluctations
ETG-ITG spectrum is highly isotropic (streamerless) for k⊥ρi > 0.5
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Mass-ratio Comparison in Electron Units
Curve approaches universal shape at short wavelength ( kθρe > 0.1)
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Electron Transport Result Matrix
About 16% (8%) of electron transport comes from kθρi > 1 (kθρi > 2)

µ kθρi < 1 kθρi > 1 kθρi > 2 kθρe > 0.1

χi/χGBi 20 7.378 0.054 0.011

30 7.754 0.043 0.009

χe/χGBi 20 2.278 0.367 0.183

30 1.587 0.296 0.157

D/χGBi 20 −0.81 0.134 0.009

30 −1.60 0.074 0.010

χe/χGBe 20 3.67

30 3.76
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Coupled ITG/TEM-ETG Transport
Summary of main results

• The adiabatic-ion model of ETG is poorly-behaved .

– Transport becomes unbounded for some parameters.

– Using the kinetic ion response cures the problem.

• Ion-temperature-gradient (ITG) transport is insensitive to ETG.

• Increased ITG drive can reduce ETG transport.

– Unclear how much of the effect is linear and how much is nonlinear .

• What fraction of χe is χETG

e ?

– Only 10% to 20% in the absence of E×B shear.

– Up to 100%, as ITG/TEM is quenched by E×B shear.
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